Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-(4-Chlorophenyl)-1-phenyl-1H-benzimidazole

#### Karimah Kassim,<sup>a</sup> N. Zakiah N. Hashim,<sup>a</sup> Adibatul Husna Fadzil<sup>a</sup> and M. Sukeri M. Yusof<sup>b\*</sup>

<sup>a</sup>Department of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and <sup>b</sup>Department of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

Correspondence e-mail: mohdsukeri@umt.edu.my

Received 8 February 2012; accepted 14 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.106; data-to-parameter ratio = 27.1.

In the title compound,  $C_{19}H_{13}ClN_2$ , the dihedral angle formed by the imidazole core with the chlorophenyl and phenyl rings are 24.07 (4) and 67.24 (4)°, respectively.

#### **Related literature**

For the applications of benzimidazoles derivatives, see: Velík et al. (2004); Aljourani et al. (2009); Tiwari et al. (2007). For related structures, see: Nor Hashim et al. (2010); Arumugam et al. (2010). For standard bond lengths, see: Allen et al. (1987).



# **Experimental**

#### Crystal data

| $C_{19}H_{13}ClN_2$             | V = 1477.56 (4) Å <sup>3</sup>            |
|---------------------------------|-------------------------------------------|
| $M_r = 304.76$                  | Z = 4                                     |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation                    |
| a = 8.2981 (1)  Å               | $\mu = 0.26 \text{ mm}^{-1}$              |
| b = 9.2963 (2)  Å               | T = 293  K                                |
| c = 20.7796 (3) Å               | $0.48 \times 0.39 \times 0.18 \text{ mm}$ |
| $\beta = 112.815 \ (1)^{\circ}$ |                                           |

#### Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\min} = 0.887, \ T_{\max} = 0.956$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$  $wR(F^2) = 0.106$ S = 1.045398 reflections

33103 measured reflections 5398 independent reflections 4610 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.027$ 

199 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.28$  e Å<sup>-3</sup>

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors thank the Ministry of Higher Education of Malaysia, Universiti Teknologi MARA, for the Young Lecture Scheme and the research grants Nos. 600-RMI/ST/FRGS and 5/3/Fst(47/2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2413).

#### References

Aljourani, J., Raeissi, K. & Golozar, M. A. (2009). Corros. Sci. 51, 1836-1843. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Arumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 01285-01286.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Nor Hashim, N. Z., Kassim, K. & Yamin, B. M. (2010). Acta Cryst. E66, o2039.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Tiwari, A. K., Mishra, A. K., Bajpai, A., Mishra, P., Singh, S., Sinha, D. & Singh, V. K. (2007). Bioorg. Med. Chem. Lett. 17, 2749-2755.

Velík, J., Baliharová, V., Fink-Gremmels, J., Bull, S., Lamka, J. & Skálová, L. (2004). Res. Vet. Sci. 76, 95-108.

# supplementary materials

Acta Cryst. (2012). E68, o799 [doi:10.1107/S1600536812006678]

# 2-(4-Chlorophenyl)-1-phenyl-1*H*-benzimidazole

# Karimah Kassim, N. Zakiah N. Hashim, Adibatul Husna Fadzil and M. Sukeri M. Yusof

# Comment

Benzimidazoles derivatives exhibit wide interest, especially in fields as biological compounds (Velík *et al.*, 2004), corrosion inhibitors (Aljourani *et al.*, 2009) and medicinal related chemistry (Tiwari *et al.*, 2007). A number of synthesis routes for substituted benzimidazole-containing structures have been developed, affording molecules that posses significant activity.

The title compound (Fig. 1) contains three six- and a one five-membered rings. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and comparable to those found in N-[(*E*)-4-chlorobenzylidene]-*N*'-phenylbenzene-1,4-diamine (Nor Hashim *et al.*, 2010) and ethyl 1-*sec*-butyl-2-(2-hydroxyphenyl)-1*H*-benzimidazole-5-carboxylate (Arumugam *et al.*, 2010). The dihedral angle between benzene (C1···C6) and benzimidazole (N1/N2/C7···C13) rings is 24.07 (4)°. In the crystal structure (Fig. 2), there are no intra- and inter-molecule interactions.

#### **Experimental**

4-Chlorobenzaldehyde (0.50 g, 3.6 mmol) in 10 ml of ethanol and *N*-phenyl-*o*-phenylenediamine (0.66 g, 3.6 mmol) in 10 ml of ethanol, were mixed in a round bottom flask. The mixture was refluxed for 5 h. The reaction mixture was then cooled to room temperature and left to stand in an open air vessel for about 48 h. Brown crystals were collected after evaporation of the solvent. Yield: 65%; m.p. 150.0–150.5°C.

# Refinement

C-bonded H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms with  $U_{iso}(H)=1.2U_{eq}(\text{parent atom})$ .

# **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).



# Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.



# Figure 2

A packing diagram of the title compound viewed down the *b* axis.

### 2-(4-Chlorophenyl)-1-phenyl-1H-benzimidazole

#### Crystal data

C<sub>19</sub>H<sub>13</sub>ClN<sub>2</sub>  $M_r = 304.76$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 8.2981 (1) Å b = 9.2963 (2) Å c = 20.7796 (3) Å  $\beta = 112.815$  (1)° V = 1477.56 (4) Å<sup>3</sup> Z = 4

#### Data collection

Bruker APEX DUO CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 83.66 pixels mm<sup>-1</sup>  $\omega$  scan Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{\min} = 0.887, T_{\max} = 0.956$ 

#### Refinement

Refinement on  $F^2$ Second<br/>ImageLeast-squares matrix: fullmap $R[F^2 > 2\sigma(F^2)] = 0.039$ Hydrog $wR(F^2) = 0.106$ neighS = 1.04H-atom5398 reflectionsw = 1/[199] parameters0 restraints $(\Delta/\sigma)_{ma}$ 0 constraints $\Delta\rho_{max} =$ Primary atom site location: structure-invariant $\Delta\rho_{min} =$ 

F(000) = 632  $D_x = 1.370 \text{ Mg m}^{-3}$ Melting point: 423 K Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$   $\theta = 2.1-32.7^{\circ}$   $\mu = 0.26 \text{ mm}^{-1}$  T = 293 KSlab, brown  $0.48 \times 0.39 \times 0.18 \text{ mm}$ 

33103 measured reflections 5398 independent reflections 4610 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.027$  $\theta_{max} = 32.7^\circ, \ \theta_{min} = 2.1^\circ$  $h = -9 \rightarrow 12$  $k = -13 \rightarrow 14$  $l = -31 \rightarrow 31$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.487P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.49$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.28$  e Å<sup>-3</sup>

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у             | Ζ              | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|----------------|-----------------------------|
| Cl1 | 0.72432 (4)  | -0.07747 (3)  | -0.201084 (13) | 0.02762 (8)                 |
| N1  | 0.15677 (11) | 0.13941 (9)   | -0.51877 (4)   | 0.01712 (15)                |
| N2  | 0.19862 (10) | -0.08273 (8)  | -0.55312 (4)   | 0.01549 (15)                |
| C1  | 0.49136 (12) | -0.11517 (11) | -0.40861 (5)   | 0.01843 (17)                |
| H1B | 0.5057       | -0.1695       | -0.4436        | 0.022*                      |
| C2  | 0.60543 (13) | -0.13482 (11) | -0.33949 (5)   | 0.02010 (18)                |
| H2A | 0.6952       | -0.2021       | -0.3281        | 0.024*                      |
| C3  | 0.58327 (13) | -0.05256 (11) | -0.28778 (5)   | 0.01930 (18)                |
| C4  | 0.45136 (13) | 0.05008 (11)  | -0.30385 (5)   | 0.01991 (18)                |
| H4A | 0.4393       | 0.1057        | -0.2688        | 0.024*                      |
| C5  | 0.33807 (13) | 0.06833 (10)  | -0.37285 (5)   | 0.01777 (17)                |
| H5A | 0.2494       | 0.1366        | -0.3840        | 0.021*                      |
| C6  | 0.35547 (12) | -0.01485 (10) | -0.42611 (5)   | 0.01522 (16)                |

| C7   | 0.23567 (12)  | 0.01388 (10)  | -0.49847 (5) | 0.01518 (16) |
|------|---------------|---------------|--------------|--------------|
| C8   | 0.06201 (12)  | 0.12524 (10)  | -0.59018 (5) | 0.01704 (17) |
| C9   | -0.04641 (13) | 0.22408 (11)  | -0.63856 (5) | 0.02113 (19) |
| H9A  | -0.0658       | 0.3155        | -0.6248      | 0.025*       |
| C10  | -0.12370 (13) | 0.18085 (12)  | -0.70759 (6) | 0.0235 (2)   |
| H10A | -0.1965       | 0.2445        | -0.7406      | 0.028*       |
| C11  | -0.09486 (14) | 0.04291 (12)  | -0.72905 (5) | 0.0232 (2)   |
| H11A | -0.1474       | 0.0183        | -0.7760      | 0.028*       |
| C12  | 0.00988 (13)  | -0.05700 (11) | -0.68185 (5) | 0.02010 (18) |
| H12A | 0.0277        | -0.1488       | -0.6956      | 0.024*       |
| C13  | 0.08723 (12)  | -0.01221 (10) | -0.61242 (5) | 0.01645 (16) |
| C14  | 0.23702 (12)  | -0.23309 (10) | -0.55279 (5) | 0.01539 (16) |
| C15  | 0.33740 (12)  | -0.28012 (11) | -0.58889 (5) | 0.01818 (17) |
| H15A | 0.3838        | -0.2146       | -0.6109      | 0.022*       |
| C16  | 0.36742 (13)  | -0.42709 (11) | -0.59159 (5) | 0.02123 (19) |
| H16A | 0.4343        | -0.4601       | -0.6155      | 0.025*       |
| C17  | 0.29783 (13)  | -0.52407 (11) | -0.55872 (6) | 0.0221 (2)   |
| H17A | 0.3173        | -0.6221       | -0.5611      | 0.027*       |
| C18  | 0.19916 (14)  | -0.47574 (11) | -0.52227 (6) | 0.0226 (2)   |
| H18A | 0.1546        | -0.5413       | -0.4996      | 0.027*       |
| C19  | 0.16673 (13)  | -0.32917 (11) | -0.51960 (5) | 0.01932 (18) |
| H19A | 0.0990        | -0.2963       | -0.4959      | 0.023*       |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | U <sup>23</sup> |
|-----|--------------|--------------|--------------|---------------|--------------|-----------------|
| Cl1 | 0.03461 (15) | 0.02418 (13) | 0.01779 (12) | -0.00362 (10) | 0.00329 (10) | 0.00170 (8)     |
| N1  | 0.0187 (3)   | 0.0134 (3)   | 0.0199 (4)   | 0.0005 (3)    | 0.0082 (3)   | -0.0005 (3)     |
| N2  | 0.0178 (3)   | 0.0120 (3)   | 0.0166 (3)   | -0.0001 (3)   | 0.0067 (3)   | -0.0015 (3)     |
| C1  | 0.0184 (4)   | 0.0169 (4)   | 0.0200 (4)   | 0.0007 (3)    | 0.0075 (3)   | -0.0019 (3)     |
| C2  | 0.0195 (4)   | 0.0176 (4)   | 0.0213 (4)   | 0.0002 (3)    | 0.0060 (3)   | -0.0005 (3)     |
| C3  | 0.0219 (4)   | 0.0177 (4)   | 0.0170 (4)   | -0.0043 (3)   | 0.0061 (3)   | 0.0005 (3)      |
| C4  | 0.0244 (4)   | 0.0187 (4)   | 0.0185 (4)   | -0.0033 (3)   | 0.0103 (3)   | -0.0031 (3)     |
| C5  | 0.0190 (4)   | 0.0155 (4)   | 0.0204 (4)   | -0.0011 (3)   | 0.0094 (3)   | -0.0024 (3)     |
| C6  | 0.0160 (4)   | 0.0130 (4)   | 0.0176 (4)   | -0.0020 (3)   | 0.0076 (3)   | -0.0013 (3)     |
| C7  | 0.0162 (4)   | 0.0130 (4)   | 0.0178 (4)   | -0.0010 (3)   | 0.0082 (3)   | -0.0018 (3)     |
| C8  | 0.0174 (4)   | 0.0149 (4)   | 0.0195 (4)   | -0.0005 (3)   | 0.0080 (3)   | 0.0009 (3)      |
| C9  | 0.0217 (4)   | 0.0173 (4)   | 0.0248 (5)   | 0.0015 (3)    | 0.0096 (4)   | 0.0044 (3)      |
| C10 | 0.0218 (4)   | 0.0256 (5)   | 0.0222 (5)   | 0.0014 (4)    | 0.0077 (4)   | 0.0076 (4)      |
| C11 | 0.0222 (4)   | 0.0286 (5)   | 0.0178 (4)   | -0.0015 (4)   | 0.0066 (3)   | 0.0018 (4)      |
| C12 | 0.0201 (4)   | 0.0216 (4)   | 0.0186 (4)   | -0.0015 (3)   | 0.0074 (3)   | -0.0017 (3)     |
| C13 | 0.0162 (4)   | 0.0158 (4)   | 0.0176 (4)   | -0.0012 (3)   | 0.0069 (3)   | 0.0004 (3)      |
| C14 | 0.0155 (4)   | 0.0129 (4)   | 0.0174 (4)   | -0.0008 (3)   | 0.0060 (3)   | -0.0022 (3)     |
| C15 | 0.0180 (4)   | 0.0191 (4)   | 0.0184 (4)   | -0.0008(3)    | 0.0081 (3)   | -0.0032 (3)     |
| C16 | 0.0185 (4)   | 0.0220 (5)   | 0.0213 (4)   | 0.0025 (3)    | 0.0057 (3)   | -0.0068 (3)     |
| C17 | 0.0197 (4)   | 0.0149 (4)   | 0.0265 (5)   | 0.0015 (3)    | 0.0031 (4)   | -0.0045 (3)     |
| C18 | 0.0226 (4)   | 0.0143 (4)   | 0.0304 (5)   | -0.0018 (3)   | 0.0098 (4)   | 0.0005 (4)      |
| C19 | 0.0199 (4)   | 0.0159 (4)   | 0.0249 (5)   | -0.0010 (3)   | 0.0117 (4)   | -0.0005 (3)     |

Geometric parameters (Å, °)

| Cl1—C3     | 1.7418 (10) | C9—C10       | 1.3845 (15) |
|------------|-------------|--------------|-------------|
| N1—C7      | 1.3245 (12) | С9—Н9А       | 0.9300      |
| N1—C8      | 1.3902 (12) | C10—C11      | 1.4083 (16) |
| N2-C13     | 1.3853 (12) | C10—H10A     | 0.9300      |
| N2—C7      | 1.3856 (12) | C11—C12      | 1.3853 (15) |
| N2-C14     | 1.4331 (12) | C11—H11A     | 0.9300      |
| C1—C2      | 1.3921 (14) | C12—C13      | 1.3960 (14) |
| C1—C6      | 1.3985 (13) | C12—H12A     | 0.9300      |
| C1—H1B     | 0.9300      | C14—C19      | 1.3876 (13) |
| C2—C3      | 1.3880 (14) | C14—C15      | 1.3900 (13) |
| C2—H2A     | 0.9300      | C15—C16      | 1.3938 (14) |
| C3—C4      | 1.3917 (15) | C15—H15A     | 0.9300      |
| C4—C5      | 1.3867 (14) | C16—C17      | 1.3852 (16) |
| C4—H4A     | 0.9300      | C16—H16A     | 0.9300      |
| C5—C6      | 1.4026 (13) | C17—C18      | 1.3880 (15) |
| С5—Н5А     | 0.9300      | C17—H17A     | 0.9300      |
| С6—С7      | 1.4701 (13) | C18—C19      | 1.3942 (14) |
| С8—С9      | 1.4011 (13) | C18—H18A     | 0.9300      |
| C8—C13     | 1.4019 (13) | C19—H19A     | 0.9300      |
|            |             |              |             |
| C7—N1—C8   | 105.16 (8)  | C9-C10-C11   | 121.67 (10) |
| C13—N2—C7  | 106.36 (8)  | C9-C10-H10A  | 119.2       |
| C13—N2—C14 | 122.43 (8)  | C11—C10—H10A | 119.2       |
| C7—N2—C14  | 130.55 (8)  | C12—C11—C10  | 121.55 (10) |
| C2—C1—C6   | 120.86 (9)  | C12—C11—H11A | 119.2       |
| C2—C1—H1B  | 119.6       | C10—C11—H11A | 119.2       |
| C6—C1—H1B  | 119.6       | C11—C12—C13  | 116.27 (10) |
| C3—C2—C1   | 119.03 (9)  | C11—C12—H12A | 121.9       |
| С3—С2—Н2А  | 120.5       | C13—C12—H12A | 121.9       |
| C1—C2—H2A  | 120.5       | N2-C13-C12   | 131.22 (9)  |
| C2—C3—C4   | 121.33 (9)  | N2-C13-C8    | 105.76 (8)  |
| C2—C3—Cl1  | 119.33 (8)  | C12—C13—C8   | 123.03 (9)  |
| C4—C3—Cl1  | 119.34 (8)  | C19—C14—C15  | 121.41 (9)  |
| C5—C4—C3   | 119.13 (9)  | C19—C14—N2   | 119.64 (8)  |
| С5—С4—Н4А  | 120.4       | C15—C14—N2   | 118.87 (8)  |
| C3—C4—H4A  | 120.4       | C14—C15—C16  | 118.94 (9)  |
| C4—C5—C6   | 120.83 (9)  | C14—C15—H15A | 120.5       |
| C4—C5—H5A  | 119.6       | C16—C15—H15A | 120.5       |
| С6—С5—Н5А  | 119.6       | C17—C16—C15  | 120.19 (9)  |
| C1—C6—C5   | 118.80 (9)  | C17—C16—H16A | 119.9       |
| C1—C6—C7   | 122.98 (8)  | C15—C16—H16A | 119.9       |
| С5—С6—С7   | 118.11 (8)  | C16—C17—C18  | 120.35 (9)  |
| N1-C7-N2   | 112.64 (8)  | C16—C17—H17A | 119.8       |
| N1—C7—C6   | 122.71 (8)  | C18—C17—H17A | 119.8       |
| N2-C7-C6   | 124.59 (8)  | C17—C18—C19  | 120.12 (10) |
| N1-C8-C9   | 130.08 (9)  | C17—C18—H18A | 119.9       |
| N1-C8-C13  | 110.08 (8)  | C19—C18—H18A | 119.9       |
| C9—C8—C13  | 119.84 (9)  | C14—C19—C18  | 118.98 (9)  |

| C10—C9—C8     | 117.62 (10) | C14—C19—H19A    | 120.5        |
|---------------|-------------|-----------------|--------------|
| С10—С9—Н9А    | 121.2       | С18—С19—Н19А    | 120.5        |
| С8—С9—Н9А     | 121.2       |                 |              |
|               |             |                 |              |
| C6—C1—C2—C3   | -0.36 (15)  | C9—C10—C11—C12  | 1.15 (16)    |
| C1—C2—C3—C4   | -0.95 (15)  | C10-C11-C12-C13 | -1.15 (15)   |
| C1—C2—C3—C11  | 179.49 (8)  | C7—N2—C13—C12   | 179.43 (10)  |
| C2—C3—C4—C5   | 1.21 (15)   | C14—N2—C13—C12  | -9.02 (16)   |
| Cl1—C3—C4—C5  | -179.23 (7) | C7—N2—C13—C8    | -0.15 (10)   |
| C3—C4—C5—C6   | -0.16 (15)  | C14—N2—C13—C8   | 171.41 (8)   |
| C2-C1-C6-C5   | 1.37 (14)   | C11—C12—C13—N2  | -179.23 (10) |
| C2-C1-C6-C7   | 177.63 (9)  | C11—C12—C13—C8  | 0.28 (15)    |
| C4—C5—C6—C1   | -1.11 (14)  | N1-C8-C13-N2    | 0.38 (10)    |
| C4—C5—C6—C7   | -177.54 (9) | C9—C8—C13—N2    | -179.76 (8)  |
| C8—N1—C7—N2   | 0.37 (10)   | N1-C8-C13-C12   | -179.24 (9)  |
| C8—N1—C7—C6   | 177.69 (8)  | C9—C8—C13—C12   | 0.62 (15)    |
| C13—N2—C7—N1  | -0.14 (10)  | C13—N2—C14—C19  | -107.24 (11) |
| C14—N2—C7—N1  | -170.76 (9) | C7—N2—C14—C19   | 62.08 (13)   |
| C13—N2—C7—C6  | -177.40 (8) | C13—N2—C14—C15  | 69.63 (12)   |
| C14—N2—C7—C6  | 11.99 (15)  | C7—N2—C14—C15   | -121.05 (11) |
| C1-C6-C7-N1   | -152.39 (9) | C19—C14—C15—C16 | 0.04 (14)    |
| C5—C6—C7—N1   | 23.89 (13)  | N2-C14-C15-C16  | -176.77 (8)  |
| C1—C6—C7—N2   | 24.60 (14)  | C14—C15—C16—C17 | 0.01 (15)    |
| C5—C6—C7—N2   | -159.12 (9) | C15—C16—C17—C18 | -0.62 (15)   |
| C7—N1—C8—C9   | 179.70 (10) | C16—C17—C18—C19 | 1.17 (15)    |
| C7—N1—C8—C13  | -0.46 (10)  | C15-C14-C19-C18 | 0.50 (14)    |
| N1-C8-C9-C10  | 179.19 (10) | N2-C14-C19-C18  | 177.29 (9)   |
| C13—C8—C9—C10 | -0.64 (14)  | C17—C18—C19—C14 | -1.10 (15)   |
| C8—C9—C10—C11 | -0.21 (15)  |                 |              |